给你两个数组 nums
和 andValues
,长度分别为 n
和 m
。
数组的 值 等于该数组的 最后一个 元素。
你需要将 nums
划分为 m
个 不相交的连续
子数组,对于第 ith
个子数组 [li, ri]
,子数组元素的按位 AND
运算结果等于 andValues[i]
,换句话说,对所有的 1 <= i <= m
,nums[li] & nums[li + 1] & ... & nums[ri] == andValues[i]
,其中 &
表示按位 AND
运算符。
返回将 nums
划分为 m
个子数组所能得到的可能的 最小 子数组 值 之和。如果无法完成这样的划分,则返回 -1
。
示例 1:
输入: nums = [1,4,3,3,2], andValues = [0,3,3,2]
输出: 12
解释:
唯一可能的划分方法为:
[1,4]
因为1 & 4 == 0
[3]
因为单元素子数组的按位AND
结果就是该元素本身[3]
因为单元素子数组的按位AND
结果就是该元素本身[2]
因为单元素子数组的按位AND
结果就是该元素本身
这些子数组的值之和为 4 + 3 + 3 + 2 = 12
示例 2:
输入: nums = [2,3,5,7,7,7,5], andValues = [0,7,5]
输出: 17
解释:
划分 nums
的三种方式为:
[[2,3,5],[7,7,7],[5]]
其中子数组的值之和为5 + 7 + 5 = 17
[[2,3,5,7],[7,7],[5]]
其中子数组的值之和为7 + 7 + 5 = 19
[[2,3,5,7,7],[7],[5]]
其中子数组的值之和为7 + 7 + 5 = 19
子数组值之和的最小可能值为 17
示例 3:
输入: nums = [1,2,3,4], andValues = [2]
输出: -1
解释:
整个数组 nums
的按位 AND
结果为 0
。由于无法将 nums
划分为单个子数组使得元素的按位 AND
结果为 2
,因此返回 -1
。
class Solution {
public int minimumValueSum(int[] nums, int[] andValues) {
Map<Long, Integer> memo = new HashMap<>();
int ans = dfs(0, 0, -1, nums, andValues, memo);
return ans < Integer.MAX_VALUE / 2 ? ans : -1;
}
private int dfs(int i, int j, int and, int[] nums, int[] andValues, Map<Long, Integer> memo) {
int n = nums.length;
int m = andValues.length;
if (n - i < m - j) { // 剩余元素不足
return Integer.MAX_VALUE / 2; // 除 2 防止下面 + nums[i] 溢出
}
if (j == m) { // 分了 m 段
return i == n ? 0 : Integer.MAX_VALUE / 2;
}
and &= nums[i];
// 三个参数压缩成一个 long
long mask = (long) i << 36 | (long) j << 32 | and;
if (memo.containsKey(mask)) { // 之前计算过
return memo.get(mask);
}
int res = dfs(i + 1, j, and, nums, andValues, memo); // 不划分
if (and == andValues[j]) { // 划分,nums[i] 是这一段的最后一个数
res = Math.min(res, dfs(i + 1, j + 1, -1, nums, andValues, memo) + nums[i]);
}
memo.put(mask, res); // 记忆化
return res;
}
}
Comments NOTHING